
Distributed Systems
CS6421

The End

Prof. Tim Wood

Tim Wood - The George Washington University - Department of Computer Science

Semester Review
Topic 1	 Intro to Distributed Systems and the Cloud
Topic 2	Network Programming (The Internet, Sockets)
Topic 3	Servers and Virtualization (EC2, VMs, Containers)
Topic 4	Networks (SDN, NFV)
Topic 5	Storage and Fault Tolerance (S3, EBS, Dynamo DB)
Topic 6	Ordering, and Consistency (DynamoDB, Riak)
Topic 7	Scalable Web Services and Serverless (Wikipedia, Netflix)
Today	 … everything else …

!2

Tim Wood - The George Washington University - Department of Computer Science

Parallelism is hard most
of the time
DCs can be a single
point of failure for the
cloud
Lots of data!

Topic 1 Intro to Distributed Systems and the Cloud

!3

1. 5 + 2 = ?
2. 11 - 2 = ?
3. 14 - 3 = ?
4. -1 + 3 = ?
5. 5*9 = ?
6. 8*8 + 3 = ?

Tim Wood - The George Washington University - Department of Computer Science

Topic 2 Network Programming (Internet, Sockets)

!4

161.253.78.16

Me

185.199.109.153

GET /timwood/simple.html HTTP/1.1
Host: faculty.cs.gwu.edu

(blank line)

Networking = lots of layers working together
Protocols are important

Tim Wood - The George Washington University - Department of Computer Science

Topic 3 Servers and Virtualization

Different types of virtualization:
- Containers, vms, full vs hosted VMs
- Different security/performance/

resource requirements

Page tables provide isolation
and nicer abstractions for
accessing memory

- Hide physical resources from the
virtual layer

-

!5

VM 1

Kernel

IIS

Hypervisor

VM 2

Kernel

MySQL

MySQL
Fedora

Apache

Ubuntu

Fedora, Linux 4.8

hello

Tim Wood - The George Washington University - Department of Computer Science

Topic 4 Networks (SDN, NFV)

!6

Interrupt		
Context		
Switch	

Overhead

Kernel	
User	

Overhead

Core	To	
Thread	

Scheduling	
Overhead

	4K	
Paging	

Overhead	

PCI	Bridge	
I/O	

Overhead

NFV reduces overheads by
avoiding kernel

- Use virtualization to share HW
- May be slower than HW, but

easier to deploy and manage

SDN allows dynamic control
of network flows

- Lets multiple users virtualize
(share) the network

Separate the control and
data plane

Tim Wood - The George Washington University - Department of Computer Science

Topic 5 Storage and Fault Tolerance

Different types of faults
need different levels of
replication
Performance numbers are
good to know
Block vs object storage

- Different abstractions/interfaces

!7

VM

HDD

Hypervisor

Manager
- request disk

Host

TimPart

Block size:
4KB

Cache

Cache

VM

Cache

VM

Hypervisor

Cache
VM

Cache

VM

Hypervisor

Cache
VM

Cache

VM

Hypervisor

Cache
VM

Cache

SSD

HDD

Host

TimPart

Cache

SSD

Cache

P2

P1

Inputs
P3

Majority
Voter output = 4

2+2=4

2+2=4

2+2=5

Tim Wood - The George Washington University - Department of Computer Science

Topic 6 Ordering, and Consistency

Ordering is easier to track than time
- different clock approaches give you  

different guarantees

Data Consistency
- Read/write trade-offs
- Quorum based systems

Election algorithms
- Lets us have a centralized 

leader without it being  
a single point of failure

!8

610 CHAPTER 14 TIME AND GLOBAL STATES

We may compare vector timestamps as follows:

V Vc iff V j> @ Vc j> @= = for j 1 2 } N� �=

V Vc iff V j> @ Vc j> @dd for j 1 2 } N� �=

V Vc iff V Vcd V Vcz��

Figure 14.7 Vector timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Let V e� � be the vector timestamp applied by the process at which e occurs. It is
straightforward to show, by induction on the length of any sequence of events relating
two events e and ec , that e eco V e� � V ec� ��� . Exercise 10.13 leads the reader to
show the converse: if V e� � V ec� �� , then e eco .

Figure 14.7 shows the vector timestamps of the events of Figure 14.5. It can be
seen, for example, that V a� � V f� �� , which reflects the fact that a o f. Similarly, we
can tell when two events are concurrent by comparing their timestamps. For example,
that c e__ can be seen from the facts that neither V c� � V e� �d nor V e� � V c� �d .

Vector timestamps have the disadvantage, compared with Lamport timestamps, of
taking up an amount of storage and message payload that is proportional to N, the
number of processes. Charron-Bost [1991] showed that, if we are to be able to tell
whether or not two events are concurrent by inspecting their timestamps, then the
dimension N is unavoidable. However, techniques exist for storing and transmitting
smaller amounts of data, at the expense of the processing required to reconstruct
complete vectors. Raynal and Singhal [1996] give an account of some of these
techniques. They also describe the notion of matrix clocks, whereby processes keep
estimates of other processes’ vector times as well as their own.

14.5 Global states

In this and the next section we examine the problem of finding out whether a particular
property is true of a distributed system as it executes. We begin by giving the examples
of distributed garbage collection, deadlock detection, termination detection and
debugging:

P4

P2

P3

P1P8

P6

P5

P7

Elect  
P8

Lock

Tim Wood - The George Washington University - Department of Computer Science

Topic 7 Scalable Web Services and Serverless

!9

H

AWS
Lambda

Multi-tier is a common architecture
Separate stateful vs stateless
components

- Different scaling techniques

Microservices divide up into small
components

- Easier to scale each piece
- Network connectivity overhead and more

complexity

Chaos Monkey
- Break stuff all the time to measure if system is

robust
- Serverless computing

- start containers on demand based on
incoming request rate

- Some requests are slow during scaleup

Tim Wood - The George Washington University - Department of Computer Science

Topic 7 Scalable Web Services and Serverless

!10

H

AWS
Lambda

Consistent Hashing
Distributed Hash Table

Need to be able to scale up
services without migrating all the
data

Tim Wood - The George Washington University - Department of Computer Science

Challenges
Heterogeneity: VMs/containers
Openness: Network protocols, PaaS
Security: VMs/containers

- Less transparency -> more security
Failure Handling: Replication
Concurrency: Distributed locks
Quality of Service: latency / throughput
Scalability: Performance gain by adding resources
Transparency: IaaS/SaaS/PaaS

!11

Everything else…

(or at least some of it)

Tim Wood - The George Washington University - Department of Computer Science

High Performance Computing
How is a super computer different from a cloud?
Super Computer

- Entire cluster bought at same time
- High end network, server, and storage HW
- Small number of scientists have access

Cloud???

!13

Tim Wood - The George Washington University - Department of Computer Science

MPI
MPI - Message Passing Interface

- Library standard defined by a committee of vendors,
implementers, and parallel programmers

- Used to create parallel programs based on message passing
- Popular for scientific computation being performed on high

performance computing clusters (super computers)

Provides communication primitives for messaging

!14

Tim Wood - The George Washington University - Department of Computer Science

Amdahl's Law [published 1967]

Parts of a program must be run sequentially and
parts can be run in parallel.

Speedup of a parallel application is limited

- Speedup =

- P = fraction of program that is parallel
- N = number of processing entities

!15

(1-P) + P/N
1

Sequential
Time-->

ParallelParallel

Tim Wood - The George Washington University - Department of Computer Science !16

Sp
ee

du
p

Number of Processorssource: wikipedia

Tim Wood - The George Washington University - Department of Computer Science

Big Data Analytics
• Volume: The amount of data companies want to
analyze is growing tremendously

- 40 trillion gigabytes by 2020

• Variety: Data is often unstructured and/or user
generated

- Tweets, videos, biometrics, much more

• Velocity: Analysis must be fast to be useful
- 1TB of new data generated by NY Stock exchange each day

!17

Tim Wood - The George Washington University - Department of Computer Science

Map Reduce & Hadoop
Map Reduce was developed at Google

- Large scale analytics
- Uses commodity servers
- Includes a distributed storage system
- Schedules tasks close to where data is located
- Detects and repeat failed or slow tasks
- New programming model: Map & Reduce

Hadoop is an open source version of Map Reduce
- Ideas are basically interchangeable

!18

Tim Wood - The George Washington University - Department of Computer Science

Map Reduce Flow

!19

input
files

Input items
(Hello, my name is…) 
(What is your name..)
(What is my favorite…)
…

Map

func()

Key-Value list
hello, 1
my, 1
name, 1
is, 1
what, 1
is, 1
your, 1

Sorting
and

Shuffling

hello, [1]
my, [1]
name, [1,1]
is, [1,1,1]
what, [1,1]
your, [1]

func()

Key, list of values
ReduceOutput

name, 2
is, 3
what, 2
…

Tim Wood - The George Washington University - Department of Computer Science

MPI vs Hadoop
Hadoop is growing

- Used by a much wider range of businesses
- Generally used to solve different problems than MPI would be

used for

!20

Google search trends

Tim Wood - The George Washington University - Department of Computer Science

Storm
Hadoop is for batch processing
Sometimes you want stream processing

Storm is basically Hadoop for streams
- Define a graph of processing nodes
- Stream data through the graph
- Manage the workers (each executing a part of the graph)
- Detect failure, carefully buffer data in queues, etc

!21

Tim Wood - The George Washington University - Department of Computer Science

Edge Computing

!22

an augmented reality tour guide and a smart bike fitness application. We will deploy our prototype on our
university testbeds as well as NSF supported testbeds such as GENI [8] and CloudLab [9] for large scale
experimental evaluation. Our prototype will be made available in open source form to other researchers
and industry partners.

The above design elements must also account for the diverse nature of emerging applications. Each
application may require special customization of its processing environment, its network resources, and even
its management policies. Thus critical to ME2C is the design of a highly customizable, software-defined
infrastructure that can be programmatically specified by application developers.
Team and expertise. Our team consists of a mix of junior and senior researchers from three universities with
expertise in distributed and operating systems, cloud and mobile computing, and wireless networking. Wood
(George Washington University; expertise: OS virtualization and networking) has worked extensively on OS
virtualization at the intersection of cloud computing and NFV. Shenoy (UMass; expertise: cloud computing
and distributed systems) has worked on cloud computing systems for more than a decade and led the design
of GENI-funded DiCloud [10] and MassNZ micro-data center [11] testbeds. Ramakrishnan (UC Riverside;
expertise: networking) has been working on network function virtualization and new cellular networking
architectures, and has extensive prior industry experience working on the design of wide-area networks and
next-generation wireless networks at AT&T. Together this team has successfully led large multi-university
research projects and has established or participated in large experimental testbeds (e.g., NSF CloudLab site
at UMass). They have worked with one another for many years, have co-authored over 20 papers, and have
co-led research grants, resulting in a close working relationship. Thus, they have the necessary management
skills, research background, and experimental skills to carry out the proposed work.

2 Background and Limitations of Current Approaches

Edge Cloud

 Mega Cloud

Smart Vehicles
Latency sensitive, mobile,
app-specific network QoS

IoT, Smart Communities
Bandwidth intensive, M2M

communication, stream-oriented

Smart Devices
Latency sensitive, mobile,

location-aware

Edge Cloud

Internet

+ More than 10,000 servers
- High latency
- Few points of presence

+ Low latency
+ Servers integrated with
 network infrastructure
- less than 100 servers
+ Many points of presence

Cell EPC, NFV,
and Edge

Applications

Figure 2: Mobile Elastic Edge Clouds for Scalable
Low-latency Applications

In this section, we present the background and design
goals that motivate our research.

Application Characteristics. Smart devices like
phones, watches, and eye wear are becoming increas-
ingly powerful, but they still are highly constrained
in terms of both computational resources and energy.
Similarly, Internet-of-Things (IoT) devices tend to be
highly resource constrained [12, 13], yet it is expected
that IoT and Machine to Machine (M2M) communica-
tion will dominate cellular network traffic in the com-
ing years, far exceeding web and voice traffic [14, 15].
Smart vehicles and other cyber physical systems will
present their own challenges due to their high mobility
and the need for low latency communication and processing [16, 17].

These emerging applications generally differ from traditional applications because of their emphasis on
one or more of the following characteristics: they are (1) latency-sensitive, (2) bandwidth-intensive, (3)
require mobility and location-awareness, or (4) need tight integration between the network and application.

Mobile Elastic Edge Clouds. Unfortunately, today’s centralized clouds are ill-equipped to handle the
characteristics of these new application types. Large cloud data centers are often many network hops away,
making them impractical for latency-sensitive applications like augmented reality. Since cloud data centers
are typically sparsely distributed across countries or continents, they cannot provide or take advantage of
location context or higher bandwidth at the network edge. At the same time, today’s cellular networks
are inefficient for many of these application types because they are designed for voice and download-centric

3

Tim Wood - The George Washington University - Department of Computer Science

Where is the edge?
Not sure… it doesn’t exist yet
Maybe every cell phone tower or “central office” will
have a rack of servers

- Who will pay to put them there?
- What will be the killer app?

“Chicken and Egg” problem
- Edge applications are only useful if there is a country-wide edge

cloud…
- Nobody will pay to build an edge cloud infrastructure unless

there are great edge applications that will pay to use it…

!23

Tim Wood - The George Washington University - Department of Computer Science

CDNs
Content Delivery Networks are similar to Edge
Clouds

- Provide content closer to the users
- Uses less core bandwidth, lower latency for users

Akamai is the major CDN company in the US
- Originally just hosted static content (videos, images, etc)
- Now supports more dynamic content

My prediction: Akamai will become an edge cloud
provider

!24

Tim Wood - The George Washington University - Department of Computer Science

IoT / CPS

!25

Tim Wood - The George Washington University - Department of Computer Science

What processing does IoT need?
Really streaming big data analytics for IoT sensor
information
Low latency edge clouds for IoT control

!26

Tim Wood - The George Washington University - Department of Computer Science

What’s next?
You now know the basic challenges faced by many
large scale distributed systems
Find an area that interests you and try to learn more
about it!
These skills will be very valuable for getting a job:

- Amazon’s cloud services
- Hadoop, big data analysis
- Network programming
- Multi-threading, concurrency
- Virtual machines, containers

There are many free resources to help you learn and
try things out. Take advantage of them!

!27

