
Distributed Systems
CS6421

Scaling the Web

Prof. Tim Wood

Tim Wood - The George Washington University - Department of Computer Science

Practice / Projects
You will learn more by trying to build something real!

If you want to get involved in research, this is your
chance!

- I will be accepting students into a 3 credit Research course for
the spring… but you need to do a cloud/NFV project and it
needs to be done well! Impress me!

If you don’t do a project, you need to write a
technical “blog” post explaining a cloud technology

!2

Tim Wood - The George Washington University - Department of Computer Science

Antique Web Servers
Serve static content

- Read a file from disk and send it back to the client
- images, HTML

Dynamic Content
- CGI Bin
- executes a program
- Not very safe or 

convenient for 
development…

!3

Tim Wood - The George Washington University - Department of Computer Science

3-tier Web Applications
LAMP = Linux, Apache, MySQL, PHP
Separation of duties:

- Front-end web server for static content (Apache, lighttpd, nginx)
- Application tier for dynamic logic (PHP, Tomcat, node.js)
- Database back-end holds state (MySQL, MongoDB, Postgres)

Why divide up in this way?

!4

Apache Tomcat MySQL

Tim Wood - The George Washington University - Department of Computer Science

Stateful vs Stateless
The multi-tier architecture is based largely around
whether a tier needs to worry about state
Front-end - totally stateless

- There is no data that must be maintained by the server to handle
subsequent requests

Application tier - maintains per-connection state
- There is some temporary data related to each user, e.g., my

shopping cart
- May not be critical for reliability - might just store in memory

Database tier - global state
- Maintains the global data that application tier might need
- Persists state and ensures it is consistent

!5

Tim Wood - The George Washington University - Department of Computer Science

N-Tier Web Applications
Sometimes 3 tiers isn’t quite right
Database is often a bottleneck

- Add a cache! (stateful, but not persistent)

Authentication or other security services could be
another tier
Video transcoding, upload processing, etc

!6

nginx
Tomcat

MySQL

memcached

Apache+
PHP

Tim Wood - The George Washington University - Department of Computer Science

Replicated N-Tier
Replicate the portions of the system that are likely to
become overloaded
How easy to scale…?

- Apache serving static content
- Tomcat Java application managing user shopping carts
- MySQL cluster storing products and completed orders

!7

Apache Tomcat MySQLApacheApache MySQL

Tune number of replicas based on demand at each tier

Tim Wood - The George Washington University - Department of Computer Science

Wikipedia: Big scale, cheap
5th busiest site in the world (according to alexa.com)
Runs on about ~ 1000 servers? (700 in 2012)
All open source software:

- PHP, MariaDB, Squid proxy, memcached, Ubuntu

Goals:
- Store lots of content (6TB of text data as of 2018)
- Make available worldwide
- Do this as cheaply as possible
- Relatively weak consistency guarantees

!8

Stats: https://grafana.wikimedia.org

!9

Tim Wood - The George Washington University - Department of Computer Science

Application Tier

!10

Problems with
Monolithic
approach?

http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

Tim Wood - The George Washington University - Department of Computer Science

Microservices

!11

Read more: https://martinfowler.com/articles/microservices.html

Tim Wood - The George Washington University - Department of Computer Science

Microservices

!12

Challenges with
Microservices

approach?

Tim Wood - The George Washington University - Department of Computer Science

Microservices Challenges
Discovery: how to find a service you want?

Scalability: how to replicate services for speed?

Openness: how to agree on a message protocol?

Fault tolerance: how to handle failed services?

!13

All distributed systems face these challenges, microservices just
increases the scale and diversity…

Tim Wood - The George Washington University - Department of Computer Science

Netflix
26th most popular website according to Alexa
Zero of their own servers

- All infrastructure is on AWS (2016-2018)
- Recently starting to build out their own Content Delivery Network

!14

Tim Wood - The George Washington University - Department of Computer Science

Netflix
One of the first to really push microservices

- Known for their DevOps
- Fast paced, frequent updates, must always be available

700+ microservices
Deployed across  
10,000s of VMs and 
containers

!15

Netflix tech talk: https://www.youtube.com/watch?v=CZ3wIuvmHeM

Tim Wood - The George Washington University - Department of Computer Science

Netflix “Deathstar”
Microservice
architecture results
in a extremely
distributed
application

- Can be very difficult
to manage and
understand how it is
working at scale

How to know if
everything is
working correctly?

!16

Tim Wood - The George Washington University - Department of Computer Science

Netflix Chaos Monkey
Idea: If my system can handle
failures, then I don’t need to
know exactly how all the
pieces themselves interact!

Chaos Monkey:
- Randomly terminate VMs and

containers in the production
environment

- Ensure that the overall system
keeps operating

- Run this 24/7

!17

Make failures the common
case, not an unknown!

http://principlesofchaos.org/

Distributed Systems
CS6421

Scaling the Web (Part 2)

Prof. Tim Wood

Tim Wood - The George Washington University - Department of Computer Science

Serverless Computing
Trendy architecture that improves the agility of
microservices
What does “serverless” mean?

!19

AWS Lambda

Tim Wood - The George Washington University - Department of Computer Science

Serverless Computing
Trendy architecture that improves the agility of
microservices
What does “serverless” mean?
You still need a server!
BUT, your services will not always be running

Key idea: only instantiate a service when a user
makes a request for that functionality

How will this work for stateful vs stateless services?
!20

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

!21

AWS Lambda

No workload means no resources being used!

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

!22

AWS Lambda

C1

Request arrives, start green container

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

!23

AWS Lambda

C1

Reuse that container for subsequent requests

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

!24

AWS Lambda

C1

Reuse that container for subsequent requests

AWS Lambda

C1
Lambda
Gateway

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

!25

AWS Lambda

C1 C2

Start new container if user needs a different function

Tim Wood - The George Washington University - Department of Computer Science

Serverless Startup
AWS Lambda

- Define a stateless “function” to execute for each request
- A container will be instantiated to handle the first request
- The same container will be used until it times out or is killed

!26

AWS Lambda

C2

Clean up old containers once not in use

Tim Wood - The George Washington University - Department of Computer Science

Serverless Pros/Cons
Benefits:

- Simple for developer when auto scaling up
- Pay for exactly what we use (at second granularity)
- Efficient use of resources (auto scale up and down based on

requests)
- don’t worry about reliability/server management at all

Drawbacks:
- Limited functionality (stateless, limited programming model)
- High latency for first request to each container
- Some container layer overheads plus the lambda gateway and

routing overheads
- Potentially higher and unpredictable costs
- Difficult to debug / monitor behavior
- Security

!27

Tim Wood - The George Washington University - Department of Computer Science

Serverless Pros/Cons
Benefits:

Drawbacks:

!28

Scaling

Tim Wood - The George Washington University - Department of Computer Science

Two ways to scale
Scale UP (vertical)

- Buy a bigger computer

Scale OUT (horizontal)
- Buy multiple computers

!30

Can only grow
so big

How to spread
work? How to

keep data
consistent?

Tim Wood - The George Washington University - Department of Computer Science

Does virtualization help?

!31

Hypervisor

MySQLFirefox

Windows Linux

Tim Wood - The George Washington University - Department of Computer Science

Does virtualization help?
Not exactly...

Virtualization divides something big into smaller
pieces

but still has features which can assist with scalability:
- Easy replication of VM images
- Dynamic resource management

Simplifies scale OUT, but has limits 
on how much you can scale UP

!32

Hypervisor

MySQLFirefox

Windows Linux

Replication

Scale Out v1

Tim Wood - The George Washington University - Department of Computer Science

Biggest Challenge: Consistency
Replicating data makes it faster to access

!34

Computer science or
computing science

(abbreviated CS or compsci)
designates the scientific and

mathematical approach in
information technology and

computing.

Computer science or
computing science

(abbreviated CS or compsci)
designates the scientific and

mathematical approach in
information technology and

computing.

Computer science or
computing science

(abbreviated CS or compsci)
designates the scientific and

mathematical approach in
information technology and

computing.

http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Computing

Tim Wood - The George Washington University - Department of Computer Science

Biggest Challenge: Consistency
Replicating data makes it faster to access

- But how to keep all copies of data consistent?

!35

Computer science is
the art and science of
doing awesome things

with computers.

Computer science or
computing science

(abbreviated CS or compsci)
designates the scientific and

mathematical approach in
information technology and

computing.

Computer science or
computing science

(abbreviated CS or compsci)
designates the scientific and

mathematical approach in
information technology and

computing.

Edit

http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Computing

Tim Wood - The George Washington University - Department of Computer Science

Biggest Challenge: Consistency
Replicating data makes it faster to access

- But how to keep all copies of data consistent?

!36

Computer science is
the art and science of
doing awesome things

with computers.

Computer science or
computing science

(abbreviated CS or compsci)
designates the scientific and

mathematical approach in
information technology and

computing.

Computer science is
the art and science of
doing awesome things

with computers.

Update

http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Computing

Tim Wood - The George Washington University - Department of Computer Science

Biggest Challenge: Consistency
Replicating data makes it faster to access

- But how to keep all copies of data consistent?

!37

Computer science is
the art and science of
doing awesome things

with computers.

Computer science or
computing science

(abbreviated CS or compsci)
designates the scientific and

mathematical approach in
information technology and

computing.

Computer science is
the art and science of
doing awesome things

with computers.

Read Read

http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Computing

Tim Wood - The George Washington University - Department of Computer Science

Biggest Challenge: Consistency
Writes are even harder

- Would need time stamps or a consistent ordering
- Or, if writes are rare, just have a master coordinate

!38

Computer science is
the art and science of
doing awesome things

with computers.

Computer science is for
nerds.

Computer science or
computing science

(abbreviated CS or compsci)
designates the scientific and

mathematical approach in
information technology and

computing.

Edit Edit

???

http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Computing

Tim Wood - The George Washington University - Department of Computer Science

Does it Matter?
A slightly out of date wikipedia page?

A post to your facebook profile?
1. Remove boss from friends list
2. Post "My boss is a moron, I want a new job!"

A change to a stock price in the NASDAQ
exchange?

!39

Tim Wood - The George Washington University - Department of Computer Science

Providing Consistency
We have already seen techniques that will help:

- Version vectors
- Distributed locking based on Lamport Clocks
- Election-based systems with a master/slave setup

There are many different types of consistency
- Strict - updates immediately available after a write
- Sequential - result of parallel updates needs to have the same

effect as if they had been done sequentially
- Causal - updates that are casually related (e.g., where vector

clocks can prove the -> relationship) are ordered sequentially, but
others may not be  
… (several more) …

- Eventual - updates will converge so at some point reads to any
replica will get the same result

!40

Tim Wood - The George Washington University

End of Semester
• Practice 2 / Projects — Sunday 12/9 (extended)

• Exam — Friday 11/30
- Concepts from lecture
- 8.5x11 page (two sided) of hand written notes
- I will post some practice questions this weekend

•

Partitioning

Scale Out v2

Tim Wood - The George Washington University - Department of Computer Science

Spread data across servers
Useful if all data does not fit on one server
Let’s consider a Key Value store like Memcached

- Lots of data to store
- Consistency is not that important
- Might need to add or remove nodes to the cluster
- How should we partition the keys across the nodes?

!43

Load Balancer

1

3
4

2

get key=xyz
get key=xyz

Tim Wood - The George Washington University - Department of Computer Science

DHTs
A Distributed Hash Table is a key-value store that
can be implemented in a Peer-2-Peer fashion.
Goals:

- Evenly partition data across the nodes
- Efficient lookups
- Gracefully handle nodes leaving and joining

!44

Tim Wood - The George Washington University - Department of Computer Science

DHTs
A Distributed Hash Table is a key-value store that
can be implemented in a P2P fashion.

!45

Array  
Index Value

1 v1

2 v2

... ...

S vs

Simple Hash Table
string: Key

Hash Function

int: H

Value is stored in  
 array[H % S]

S = array size

Tim Wood - The George Washington University - Department of Computer Science

DHTs
What if one node can't fit all the data?
Do two hash lookups!

!46

Simple DHT
string: Key

Hash Function

int: H

Value is stored on  
 node[H % N]

Node 
Address

1

2

...

N

Array 
Index Value

1 v1

2 v2

... ...

S vn

Array 
Index Value

1 v1

2 v2

... ...

S vn

Array 
Index Value

1 v1

2 v2

... ...

S vn

S = array size
N = # of nodes

Tim Wood - The George Washington University - Department of Computer Science

DHTs
When will this perform poorly?

!47

Simple DHT
string: Key

Hash Function

int: H

Value is stored on  
 node[H % N]

Node 
Address

1

2

...

N

Array 
Index Value

1 v1

2 v2

... ...

S vn

Array 
Index Value

1 v1

2 v2

... ...

S vn

Array 
Index Value

1 v1

2 v2

... ...

S vn

S = array size
N = # of nodes

Tim Wood - The George Washington University - Department of Computer Science

Churn
Churn is when nodes are frequently joining or leaving

- In a DHT it is OK to lose data when a node leaves, but it
shouldn't cause all other nodes to reshuffle their data!

!48

Simple DHT Hash Space
0
...
...
...
...
...
...
MAX

Divides hash space  
into 4 equal partitions 

for 4 servers

Value is stored on  
 node[H % 4]

1 2

3 4

Tim Wood - The George Washington University - Department of Computer Science

Churn
Churn is when nodes are frequently joining or leaving

- In a DHT it is OK to lose data when a node leaves, but it
shouldn't cause all other nodes to reshuffle their data!

!49

Simple DHT

Oops! 
Green node  

failed!

Hash Space
0
...
...
...
...
...
...
MAX

Hash Space
0
...
...
...
...
...
...
MAX

2

3 4

All nodes 
needs to be  
reorganized!

Tim Wood - The George Washington University - Department of Computer Science

Chord DHT Architecture
Think of hash space as a ring
Nodes pick a random ID
when they join: 0 to MAX-1
Nodes are assigned
contiguous portions of the
ring starting at their ID until
they reach the subsequent
node

Will this evenly divide up
the hash space?

!50

46

99

Hash  
Space

0

25

53

Tim Wood - The George Washington University - Department of Computer Science

Chord DHT Architecture
Will this evenly divide up
the hash space?
If we have a lot of nodes,
probably yes!

Or, each node can claim
multiple IDs (virtual nodes)

!51

Hash  
Space

Tim Wood - The George Washington University - Department of Computer Science

Chord Churn
What happens when a node is removed?

- How many nodes were affected?

!52

After  
green 
leaves

Before  
green 
leaves

Tim Wood - The George Washington University - Department of Computer Science

Chord Churn
What happens when a node is added?

- How many nodes were affected?

!53

Before  
black 
joins

After  
black 
joins

Tim Wood - The George Washington University - Department of Computer Science

Chord Lookups
Where can we find the key with hash H?
How can the purple node get  
the data for H?

!54

Hash  
Space

H

Tim Wood - The George Washington University - Department of Computer Science

Chord Lookups
Where can we find the key with hash H?
How can the purple node get  
the data for H?

Options 0: Key Index Table
- Store the node holding each keys  

in a central server
- Directly access the node!
- If we have millions of keys 

this table will be really big!
- The node that manages the 

index table will be a centralized 
bottleneck!

!55

Key Node

1 Y

H G

... ...

88 B

H

Tim Wood - The George Washington University - Department of Computer Science

Chord Lookups
Where can we find the key with hash H?
How can the purple node get  
the data for H?

Options 1: Node Index Table
- Store the indices of all node IDs
- Find which ID is closest to H
- Table is still very large and may  

be bottleneck!
- Also need to worry about  

consistently updating the table!

!56

Start Node

0 G

12 Y

20 G

... ...

H

Tim Wood - The George Washington University - Department of Computer Science

Chord Lookups
Where can we find the key with hash H?
How can the purple node get  
the data for H?

Options 2: Neighbors
- Each node tracks its successor 

and predecessor
- If H > ID, ask successor  

else ask predecessor
- Requires minimal state
- Can take a long time to traverse  

the ring! O(N)

!57

H

Tim Wood - The George Washington University - Department of Computer Science

Chord Lookups
Where can we find the key with hash H?
How can the purple node get  
the data for H?

Options 3: Finger Tables
- Track m additional neighbors:  

successor 20, 21, 22, ... 2m
- Jump to closest successor  

to find H, then jump again
- Requires minimal state
- Can find item in log(N) steps

!58

H

Tim Wood - The George Washington University - Department of Computer Science

Chord Lookups
Where can we find the key with hash H?
How can the purple node get  
the data for H?

Options 3: Finger Tables
- Track m additional neighbors:  

successor 20, 21, 22, ... 2m
- Jump to closest successor  

to find H, then jump again
- Requires minimal state
- Can find item in log(N) steps

!59

H

