
Distributed Systems
CS6421

Clocks & Coordination

Prof. Tim Wood

Tim Wood - The George Washington University

Challenges
• Heterogeneity
• Openness
• Security
• Failure Handling
• Concurrency
• Quality of Service
• Scalability
• Transparency

Tim Wood - The George Washington University

Clocks and Timing
• Distributed systems often need to order events to
help with consistency and coordination

• Coordinating updates to a distributed file system
• Managing distributed locks
• Providing consistent updates in a distributed DB
•

Tim Wood - The George Washington University

Coordinating time?
• How can we synchronize the clocks on two servers?

A

B
clock: 8:01

clock: 8:03

Tim Wood - The George Washington University

Cristian’s Algorithm
• Easy way to synchronize clock with a time server

• Client sends a clock request to server
• Measures the round trip time
• Set clock to t + 1/2*RTT (8:01.505)

A

B
clock t = 8:01.500

0.010 sec

Tim Wood - The George Washington University

Cristian’s Algorithm
• What will affect accuracy?

A

B t

0.010 sec

C

D

0.010 sec

t

set to t + RTT/2

no error!

ahead or behind?

Tim Wood - The George Washington University

Cristian’s Algorithm
• Suppose the minimum delay between A and B is X

E

F

0.010 sec

t

Range: [t+x, t + RTT-x]
C

D

0.010 sec

t

x

x

Tim Wood - The George Washington University

Ordering
• Sometimes we don’t actually need clock time

• We just care about the order of events!

• What event happens before another event?
- e->e’ means event e happens before event e’

• Easy: we’ll just use counters in each process and
update them when events happen!

- Maybe not so easy…

Tim Wood - The George Washington University

Ordering

• An event is one of the following:
- Action that occurs within a process
- Sending a message
- Receiving a message

• What is true? What can’t we know?

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 607

14.4 Logical time and logical clocks

From the point of view of any single process, events are ordered uniquely by times
shown on the local clock. However, as Lamport [1978] pointed out, since we cannot
synchronize clocks perfectly across a distributed system, we cannot in general use
physical time to find out the order of any arbitrary pair of events occurring within it.

In general, we can use a scheme that is similar to physical causality but that applies
in distributed systems to order some of the events that occur at different processes. This
ordering is based on two simple and intuitively obvious points:

• If two events occurred at the same process pi i 1 2 } N� � �=� � , then they
occurred in the order in which pi observes them – this is the order oi that we
defined above.

• Whenever a message is sent between processes, the event of sending the message
occurred before the event of receiving the message.

Lamport called the partial ordering obtained by generalizing these two relationships the
happened-before relation. It is also sometimes known as the relation of causal ordering
or potential causal ordering.

We can define the happened-before relation, denoted by o, as follows:

HB1: If ��process�pi : e oi e', then e eco .

HB2: For any message m, send(m) o receive(m)�
– where send(m) is the event of sending the message, and receive(m)
is the event of receiving it.

HB3: If e, ec and es are events such that e eco and ec eso , then e eso .

Thus, if e and ec are events, and if e eco , then we can find a series of events
e1 e2 } en� � � occurring at one or more processes such that e e1= and ec en= , and
for i 1 2 } N� 1–� �= either HB1 or HB2 applies between ei and ei 1+

· . That is, either
they occur in succession at the same process, or there is a message m such that ei =
send(m) and ei 1+ = receive(m). The sequence of events e1 e2 } en� � � need not be
unique.

The relation o is illustrated for the case of three processes, p1 , p2 and p3 , in
Figure 14.5

Figure 14.5 Events occurring at three processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

. It can be seen that a o b, since the events occur in this order at process p1
(a oi b), and similarly c o d. Furthermore, b o c, since these events are the sending and

g

Tim Wood - The George Washington University

Happens Before: ->

• What is true?
- a->b, b->g, c->d, e->f (events in same process)
- b->c, d->f (send is before receive)

• What can’t we know?
- e ?? a
- e ?? c

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 607

14.4 Logical time and logical clocks

From the point of view of any single process, events are ordered uniquely by times
shown on the local clock. However, as Lamport [1978] pointed out, since we cannot
synchronize clocks perfectly across a distributed system, we cannot in general use
physical time to find out the order of any arbitrary pair of events occurring within it.

In general, we can use a scheme that is similar to physical causality but that applies
in distributed systems to order some of the events that occur at different processes. This
ordering is based on two simple and intuitively obvious points:

• If two events occurred at the same process pi i 1 2 } N� � �=� � , then they
occurred in the order in which pi observes them – this is the order oi that we
defined above.

• Whenever a message is sent between processes, the event of sending the message
occurred before the event of receiving the message.

Lamport called the partial ordering obtained by generalizing these two relationships the
happened-before relation. It is also sometimes known as the relation of causal ordering
or potential causal ordering.

We can define the happened-before relation, denoted by o, as follows:

HB1: If ��process�pi : e oi e', then e eco .

HB2: For any message m, send(m) o receive(m)�
– where send(m) is the event of sending the message, and receive(m)
is the event of receiving it.

HB3: If e, ec and es are events such that e eco and ec eso , then e eso .

Thus, if e and ec are events, and if e eco , then we can find a series of events
e1 e2 } en� � � occurring at one or more processes such that e e1= and ec en= , and
for i 1 2 } N� 1–� �= either HB1 or HB2 applies between ei and ei 1+

· . That is, either
they occur in succession at the same process, or there is a message m such that ei =
send(m) and ei 1+ = receive(m). The sequence of events e1 e2 } en� � � need not be
unique.

The relation o is illustrated for the case of three processes, p1 , p2 and p3 , in
Figure 14.5

Figure 14.5 Events occurring at three processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

. It can be seen that a o b, since the events occur in this order at process p1
(a oi b), and similarly c o d. Furthermore, b o c, since these events are the sending and

g

Tim Wood - The George Washington University

Ordering

• If we keep count of events at each process
independently, are those counters meaningful?

•

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 607

14.4 Logical time and logical clocks

From the point of view of any single process, events are ordered uniquely by times
shown on the local clock. However, as Lamport [1978] pointed out, since we cannot
synchronize clocks perfectly across a distributed system, we cannot in general use
physical time to find out the order of any arbitrary pair of events occurring within it.

In general, we can use a scheme that is similar to physical causality but that applies
in distributed systems to order some of the events that occur at different processes. This
ordering is based on two simple and intuitively obvious points:

• If two events occurred at the same process pi i 1 2 } N� � �=� � , then they
occurred in the order in which pi observes them – this is the order oi that we
defined above.

• Whenever a message is sent between processes, the event of sending the message
occurred before the event of receiving the message.

Lamport called the partial ordering obtained by generalizing these two relationships the
happened-before relation. It is also sometimes known as the relation of causal ordering
or potential causal ordering.

We can define the happened-before relation, denoted by o, as follows:

HB1: If ��process�pi : e oi e', then e eco .

HB2: For any message m, send(m) o receive(m)�
– where send(m) is the event of sending the message, and receive(m)
is the event of receiving it.

HB3: If e, ec and es are events such that e eco and ec eso , then e eso .

Thus, if e and ec are events, and if e eco , then we can find a series of events
e1 e2 } en� � � occurring at one or more processes such that e e1= and ec en= , and
for i 1 2 } N� 1–� �= either HB1 or HB2 applies between ei and ei 1+

· . That is, either
they occur in succession at the same process, or there is a message m such that ei =
send(m) and ei 1+ = receive(m). The sequence of events e1 e2 } en� � � need not be
unique.

The relation o is illustrated for the case of three processes, p1 , p2 and p3 , in
Figure 14.5

Figure 14.5 Events occurring at three processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

. It can be seen that a o b, since the events occur in this order at process p1
(a oi b), and similarly c o d. Furthermore, b o c, since these events are the sending and

1 2

1 2

1 2

g
3

Tim Wood - The George Washington University

Lamport Clock

• Each process maintains a counter, L
• Increment counter when an event happens
• When receiving a message, take max of own and
sender’s counter, then increment

Figure 14.6 Lamport timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 609

Totally ordered logical clocks • Some pairs of distinct events, generated by different
processes, have numerically identical Lamport timestamps. However, we can create a
total order on the set of events – that is, one for which all pairs of distinct events are
ordered – by taking into account the identifiers of the processes at which events occur.
If e is an event occurring at pi with local timestamp Ti , and ec is an event occurring at
pj with local timestamp Tj , we define the global logical timestamps for these events to
be Ti i�� � and Tj j�� � , respectively. And we define Ti i�� � Tj j�� �� if and only if either
Ti Tj� , or Ti Tj= and i j� . This ordering has no general physical significance
(because process identifiers are arbitrary), but it is sometimes useful. Lamport used it,
for example, to order the entry of processes to a critical section.

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome
the shortcoming of Lamport’s clocks: the fact that from L e� � L ec� �� we cannot
conclude that e ec

·
o . A vector clock for a system of N processes is an array of N

integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local
events. Like Lamport timestamps, processes piggyback vector timestamps on the
messages they send to one another, and there are simple rules for updating the clocks:

VC1: Initially, Vi j> @ 0= , for i j� 1 2} N� �= .

VC2: Just before pi timestamps an event, it sets Vi i> @ :=Vi i> @ 1.+

VC3: pi includes the value t Vi= in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets
Vi j> @ := max Vi j> @ t j> @�� � , for j 1 2} N� �= . Taking the component-
wise maximum of two vector timestamps in this way is known as a merge
operation.

For a vector clock Vi , Vi i> @ is the number of events that pi has timestamped, and
Vi j> @ j iz� � is the number of events that have occurred at pj that have potentially
affected pi . (Process pj may have timestamped more events by this point, but no
information has flowed to pi about them in messages as yet.)

g
3

Tim Wood - The George Washington University

Clock Comparison

Figure 14.6 Lamport timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 609

Totally ordered logical clocks • Some pairs of distinct events, generated by different
processes, have numerically identical Lamport timestamps. However, we can create a
total order on the set of events – that is, one for which all pairs of distinct events are
ordered – by taking into account the identifiers of the processes at which events occur.
If e is an event occurring at pi with local timestamp Ti , and ec is an event occurring at
pj with local timestamp Tj , we define the global logical timestamps for these events to
be Ti i�� � and Tj j�� � , respectively. And we define Ti i�� � Tj j�� �� if and only if either
Ti Tj� , or Ti Tj= and i j� . This ordering has no general physical significance
(because process identifiers are arbitrary), but it is sometimes useful. Lamport used it,
for example, to order the entry of processes to a critical section.

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome
the shortcoming of Lamport’s clocks: the fact that from L e� � L ec� �� we cannot
conclude that e ec

·
o . A vector clock for a system of N processes is an array of N

integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local
events. Like Lamport timestamps, processes piggyback vector timestamps on the
messages they send to one another, and there are simple rules for updating the clocks:

VC1: Initially, Vi j> @ 0= , for i j� 1 2} N� �= .

VC2: Just before pi timestamps an event, it sets Vi i> @ :=Vi i> @ 1.+

VC3: pi includes the value t Vi= in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets
Vi j> @ := max Vi j> @ t j> @�� � , for j 1 2} N� �= . Taking the component-
wise maximum of two vector timestamps in this way is known as a merge
operation.

For a vector clock Vi , Vi i> @ is the number of events that pi has timestamped, and
Vi j> @ j iz� � is the number of events that have occurred at pj that have potentially
affected pi . (Process pj may have timestamped more events by this point, but no
information has flowed to pi about them in messages as yet.)

Lamport clocks

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 607

14.4 Logical time and logical clocks

From the point of view of any single process, events are ordered uniquely by times
shown on the local clock. However, as Lamport [1978] pointed out, since we cannot
synchronize clocks perfectly across a distributed system, we cannot in general use
physical time to find out the order of any arbitrary pair of events occurring within it.

In general, we can use a scheme that is similar to physical causality but that applies
in distributed systems to order some of the events that occur at different processes. This
ordering is based on two simple and intuitively obvious points:

• If two events occurred at the same process pi i 1 2 } N� � �=� � , then they
occurred in the order in which pi observes them – this is the order oi that we
defined above.

• Whenever a message is sent between processes, the event of sending the message
occurred before the event of receiving the message.

Lamport called the partial ordering obtained by generalizing these two relationships the
happened-before relation. It is also sometimes known as the relation of causal ordering
or potential causal ordering.

We can define the happened-before relation, denoted by o, as follows:

HB1: If ��process�pi : e oi e', then e eco .

HB2: For any message m, send(m) o receive(m)�
– where send(m) is the event of sending the message, and receive(m)
is the event of receiving it.

HB3: If e, ec and es are events such that e eco and ec eso , then e eso .

Thus, if e and ec are events, and if e eco , then we can find a series of events
e1 e2 } en� � � occurring at one or more processes such that e e1= and ec en= , and
for i 1 2 } N� 1–� �= either HB1 or HB2 applies between ei and ei 1+

· . That is, either
they occur in succession at the same process, or there is a message m such that ei =
send(m) and ei 1+ = receive(m). The sequence of events e1 e2 } en� � � need not be
unique.

The relation o is illustrated for the case of three processes, p1 , p2 and p3 , in
Figure 14.5

Figure 14.5 Events occurring at three processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

. It can be seen that a o b, since the events occur in this order at process p1
(a oi b), and similarly c o d. Furthermore, b o c, since these events are the sending and

1 2

1 2

1 2

Independent clocks

• if e->e’, then:
• C(e) ??? C(e’)

• if e->e’, then:
• L(e) < L(e’)

g
3

g
3

Tim Wood - The George Washington University

Clock Comparison

Figure 14.6 Lamport timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 609

Totally ordered logical clocks • Some pairs of distinct events, generated by different
processes, have numerically identical Lamport timestamps. However, we can create a
total order on the set of events – that is, one for which all pairs of distinct events are
ordered – by taking into account the identifiers of the processes at which events occur.
If e is an event occurring at pi with local timestamp Ti , and ec is an event occurring at
pj with local timestamp Tj , we define the global logical timestamps for these events to
be Ti i�� � and Tj j�� � , respectively. And we define Ti i�� � Tj j�� �� if and only if either
Ti Tj� , or Ti Tj= and i j� . This ordering has no general physical significance
(because process identifiers are arbitrary), but it is sometimes useful. Lamport used it,
for example, to order the entry of processes to a critical section.

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome
the shortcoming of Lamport’s clocks: the fact that from L e� � L ec� �� we cannot
conclude that e ec

·
o . A vector clock for a system of N processes is an array of N

integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local
events. Like Lamport timestamps, processes piggyback vector timestamps on the
messages they send to one another, and there are simple rules for updating the clocks:

VC1: Initially, Vi j> @ 0= , for i j� 1 2} N� �= .

VC2: Just before pi timestamps an event, it sets Vi i> @ :=Vi i> @ 1.+

VC3: pi includes the value t Vi= in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets
Vi j> @ := max Vi j> @ t j> @�� � , for j 1 2} N� �= . Taking the component-
wise maximum of two vector timestamps in this way is known as a merge
operation.

For a vector clock Vi , Vi i> @ is the number of events that pi has timestamped, and
Vi j> @ j iz� � is the number of events that have occurred at pj that have potentially
affected pi . (Process pj may have timestamped more events by this point, but no
information has flowed to pi about them in messages as yet.)

• if e->e’, then:
• L(e) < L(e’)

Is the opposite true?
if L(e) < L(e’) then do we know e->e’?

g
3

Lamport clocks

Tim Wood - The George Washington University

Clock Comparison

Figure 14.6 Lamport timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 609

Totally ordered logical clocks • Some pairs of distinct events, generated by different
processes, have numerically identical Lamport timestamps. However, we can create a
total order on the set of events – that is, one for which all pairs of distinct events are
ordered – by taking into account the identifiers of the processes at which events occur.
If e is an event occurring at pi with local timestamp Ti , and ec is an event occurring at
pj with local timestamp Tj , we define the global logical timestamps for these events to
be Ti i�� � and Tj j�� � , respectively. And we define Ti i�� � Tj j�� �� if and only if either
Ti Tj� , or Ti Tj= and i j� . This ordering has no general physical significance
(because process identifiers are arbitrary), but it is sometimes useful. Lamport used it,
for example, to order the entry of processes to a critical section.

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome
the shortcoming of Lamport’s clocks: the fact that from L e� � L ec� �� we cannot
conclude that e ec

·
o . A vector clock for a system of N processes is an array of N

integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local
events. Like Lamport timestamps, processes piggyback vector timestamps on the
messages they send to one another, and there are simple rules for updating the clocks:

VC1: Initially, Vi j> @ 0= , for i j� 1 2} N� �= .

VC2: Just before pi timestamps an event, it sets Vi i> @ :=Vi i> @ 1.+

VC3: pi includes the value t Vi= in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets
Vi j> @ := max Vi j> @ t j> @�� � , for j 1 2} N� �= . Taking the component-
wise maximum of two vector timestamps in this way is known as a merge
operation.

For a vector clock Vi , Vi i> @ is the number of events that pi has timestamped, and
Vi j> @ j iz� � is the number of events that have occurred at pj that have potentially
affected pi . (Process pj may have timestamped more events by this point, but no
information has flowed to pi about them in messages as yet.)

• if e->e’, then:
• L(e) < L(e’)

Is the opposite true? No!
Lamport clocks don’t actually let us compare  

two clocks to know how they are related :(

g
3

Lamport clocks

Tim Wood - The George Washington University

Lamport Clocks
• Lamport clocks are better than nothing

- but only let us make limited guarantees about how things are
ordered

• Ideally we want a clock value that indicates:
- If an event happened before another event
- If two events happened concurrently

Figure 14.6 Lamport timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

SECTION 14.4 LOGICAL TIME AND LOGICAL CLOCKS 609

Totally ordered logical clocks • Some pairs of distinct events, generated by different
processes, have numerically identical Lamport timestamps. However, we can create a
total order on the set of events – that is, one for which all pairs of distinct events are
ordered – by taking into account the identifiers of the processes at which events occur.
If e is an event occurring at pi with local timestamp Ti , and ec is an event occurring at
pj with local timestamp Tj , we define the global logical timestamps for these events to
be Ti i�� � and Tj j�� � , respectively. And we define Ti i�� � Tj j�� �� if and only if either
Ti Tj� , or Ti Tj= and i j� . This ordering has no general physical significance
(because process identifiers are arbitrary), but it is sometimes useful. Lamport used it,
for example, to order the entry of processes to a critical section.

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome
the shortcoming of Lamport’s clocks: the fact that from L e� � L ec� �� we cannot
conclude that e ec

·
o . A vector clock for a system of N processes is an array of N

integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local
events. Like Lamport timestamps, processes piggyback vector timestamps on the
messages they send to one another, and there are simple rules for updating the clocks:

VC1: Initially, Vi j> @ 0= , for i j� 1 2} N� �= .

VC2: Just before pi timestamps an event, it sets Vi i> @ :=Vi i> @ 1.+

VC3: pi includes the value t Vi= in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets
Vi j> @ := max Vi j> @ t j> @�� � , for j 1 2} N� �= . Taking the component-
wise maximum of two vector timestamps in this way is known as a merge
operation.

For a vector clock Vi , Vi i> @ is the number of events that pi has timestamped, and
Vi j> @ j iz� � is the number of events that have occurred at pj that have potentially
affected pi . (Process pj may have timestamped more events by this point, but no
information has flowed to pi about them in messages as yet.)

g
3

Lamport clocks P1 P2 P3

a:1 c:3 e:1

b:2 d:4 f:5

g:3

Tim Wood - The George Washington University

Vector Clocks

• Each process keeps an array of counters: (p1, p2, p3)
- When p_i has an event, increment V[p_i]
- Send full vector clock with message
- Update each entry to the maximum when receiving a clock

610 CHAPTER 14 TIME AND GLOBAL STATES

We may compare vector timestamps as follows:

V Vc iff V j> @ Vc j> @= = for j 1 2 } N� �=

V Vc iff V j> @ Vc j> @dd for j 1 2 } N� �=

V Vc iff V Vcd V Vcz��

Figure 14.7 Vector timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Let V e� � be the vector timestamp applied by the process at which e occurs. It is
straightforward to show, by induction on the length of any sequence of events relating
two events e and ec , that e eco V e� � V ec� ��� . Exercise 10.13 leads the reader to
show the converse: if V e� � V ec� �� , then e eco .

Figure 14.7 shows the vector timestamps of the events of Figure 14.5. It can be
seen, for example, that V a� � V f� �� , which reflects the fact that a o f. Similarly, we
can tell when two events are concurrent by comparing their timestamps. For example,
that c e__ can be seen from the facts that neither V c� � V e� �d nor V e� � V c� �d .

Vector timestamps have the disadvantage, compared with Lamport timestamps, of
taking up an amount of storage and message payload that is proportional to N, the
number of processes. Charron-Bost [1991] showed that, if we are to be able to tell
whether or not two events are concurrent by inspecting their timestamps, then the
dimension N is unavoidable. However, techniques exist for storing and transmitting
smaller amounts of data, at the expense of the processing required to reconstruct
complete vectors. Raynal and Singhal [1996] give an account of some of these
techniques. They also describe the notion of matrix clocks, whereby processes keep
estimates of other processes’ vector times as well as their own.

14.5 Global states

In this and the next section we examine the problem of finding out whether a particular
property is true of a distributed system as it executes. We begin by giving the examples
of distributed garbage collection, deadlock detection, termination detection and
debugging:

g
(3,0,0)

(0,0,0)

Tim Wood - The George Washington University

Vector Clocks

• Now we can compare orderings!
• if V(e) < V(e’) then e->e’

- (a,b,c) < (d,e,f) if:  
 a<d & b<e & c<f

• If neither V(e) < V(e’) nor V(e’) < V(e)
then e and e’ are concurrent events

610 CHAPTER 14 TIME AND GLOBAL STATES

We may compare vector timestamps as follows:

V Vc iff V j> @ Vc j> @= = for j 1 2 } N� �=

V Vc iff V j> @ Vc j> @dd for j 1 2 } N� �=

V Vc iff V Vcd V Vcz��

Figure 14.7 Vector timestamps for the events shown in Figure 14.5

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Let V e� � be the vector timestamp applied by the process at which e occurs. It is
straightforward to show, by induction on the length of any sequence of events relating
two events e and ec , that e eco V e� � V ec� ��� . Exercise 10.13 leads the reader to
show the converse: if V e� � V ec� �� , then e eco .

Figure 14.7 shows the vector timestamps of the events of Figure 14.5. It can be
seen, for example, that V a� � V f� �� , which reflects the fact that a o f. Similarly, we
can tell when two events are concurrent by comparing their timestamps. For example,
that c e__ can be seen from the facts that neither V c� � V e� �d nor V e� � V c� �d .

Vector timestamps have the disadvantage, compared with Lamport timestamps, of
taking up an amount of storage and message payload that is proportional to N, the
number of processes. Charron-Bost [1991] showed that, if we are to be able to tell
whether or not two events are concurrent by inspecting their timestamps, then the
dimension N is unavoidable. However, techniques exist for storing and transmitting
smaller amounts of data, at the expense of the processing required to reconstruct
complete vectors. Raynal and Singhal [1996] give an account of some of these
techniques. They also describe the notion of matrix clocks, whereby processes keep
estimates of other processes’ vector times as well as their own.

14.5 Global states

In this and the next section we examine the problem of finding out whether a particular
property is true of a distributed system as it executes. We begin by giving the examples
of distributed garbage collection, deadlock detection, termination detection and
debugging:

g
(3,0,0)

P1 P2 P3

a: 1,0,0 c: 2,1,0 e: 0,0,1

b: 2,0,0 d: 2,2,0 f: 2,2,2

g: 3,0,0

(0,0,0)

Tim Wood - The George Washington University

Lamport vs Vector
• Which clock is more useful when you can’t see the
timing diagram?

- Remember, your program will only see these counters!

P1 P2 P3

a: 1,0,0 c: 2,1,0 e: 0,0,1

b: 2,0,0 d: 2,2,0 f: 2,2,2

g: 3,0,0

P1 P2 P3

a:1 c:3 e:1

b:2 d:4 f:5

g:3

Tim Wood - The George Washington University

VC Worksheet

• What are the vector clocks at each event?
• Assume all processes start with (0,0,0)

P1

P2

P3

a

b

c

d

e f

g

h i

j

?

? ? ?

?

? ?

?

?

?

Tim Wood - The George Washington University

How to Compare VC?

• How does g compare to d?
•

P1

P2

P3

1,0,0

0,0,1 0,0,2 2,2,3

2,0,0

2,1,0 2,2,0

3,0,0

2,2,4

4,2,4
a

b

c

d

e f

g

h i

j

Tim Wood - The George Washington University

Vector Clocks
• Allow us to compare clocks to determine a partial
ordering of events

• Example usage: versioning a document being edited
by multiple users. How do you know the order edits
were applied and who had what version when they
edited?

• Is there a drawback to vector clocks compared to
Lamport clocks?

Tim Wood - The George Washington University

Clock Worksheet
• Do the worksheet in groups of 2-3 students

• When you finish, do this on the back:
- Draw the timeline for the four processes with vector clocks

shown in problem 3. Compare your answer with another group.

P1 P2 P3 P4

a: 1,0,0,0 e: 1,1,0,0 i: 0,0,1,0 l: 0,0,0,1

b: 2,0,0,0 f: 1,2,0,1 j: 0,0,2,2 m: 0,0,0,2

c: 3,0,0,0 g: 1,3,0,1 k: 0,0,3,2 n: 0,0,0,3

d: 4,2,0,1 h: 1,4,3,2

Find the
bug???

Tim Wood - The George Washington University

Version Vectors
• We can apply the vector clock concept to versioning
a piece of data

- This is used in many distributed data stores (DynamoDB, Riak)
• When a piece of data is updated:

- Tag it with the actor who is modifying it and the version #
- Treat the (actor: version) pairs like a vector clock

• The version vectors can be used to determine a
causal ordering of updates

• Also can detect concurrent updates
• Need to have a policy for resolving conflicts

- If two versions are concurrent, they are “siblings”, return both!

Tim Wood - The George Washington University

Version Vectors
• Alice tells everyone to meet on Wednesday
• Dave and Cathy discuss and decide on Thursday
• Ben and Dave exchange emails and decide Tuesday
• Alice wants to know the final meeting time, but Dave
is offline and Ben and Cathy disagree… what to do?

•

Alice Bob Cathy Dave

Wednesday Thursday ???Tuesday

Tim Wood - The George Washington University

Version Vectors
• Alice tells everyone to meet on Wednesday
• Dave and Cathy discuss and decide on Thursday
• Ben and Dave exchange emails and decide Tuesday

Alice Bob Cathy Dave

Wednesday Wednesday Wednesday Wednesday

ThursdayThursday

Tuesday

Tuesday

Tim Wood - The George Washington University

Version Vectors
• Alice tells everyone to meet on Wednesday
• Dave and Cathy discuss and decide on Thursday
• Ben and Dave exchange emails and decide Tuesday

Alice Bob Cathy Dave
Wednesday

A:1
Wednesday

A:1
Wednesday

A:1
Wednesday

A:1

Thursday
A:1, C:1, D:1

Thursday
A:1, C:1, D:1

Tuesday
A:1, B:1, C:1, D:2

Tuesday
A:1, B:1, C:1, D:2

Tim Wood - The George Washington University

Version Vectors
• The result ends on the order of:

- Dave and Cathy discuss and decide on Thursday
- Ben and Dave exchange emails and decide Tuesday

Alice Bob Cathy Dave

Wednesday
A:1

Tuesday
A:1, B:1, C:1, D:2

Thursday
A:1, C:1, D:1

Tuesday
A:1, B:1, C:1, D:2

or

Wednesday
A:1

Thursday
A:1, B:1, C:1, D:2

Thursday
A:1, B:1, C:1, D:2

Tuesday
A:1, B:1, D:1

Alice Bob Cathy Dave

Tim Wood - The George Washington University

Resolving Conflicts
• What if we have?

• What are the conflicts?

Friday
A:2

Thursday
A:1, B:1, C:1, D:2

Thursday
A:1, B:1, C:1, D:2

Tuesday
A:1, B:1, D:1

Alice Bob Cathy Dave

Tim Wood - The George Washington University

Resolving Conflicts
• What if we have?

• How to resolve Alice vs the rest?
- The Tuesday vs Thursday debate is not a real conflict since we

can order them based on their version vectors
• We need a policy for resolving the conflicts

- Random
- Priority based
- User resolved

Friday
A:2

Thursday
A:1, B:1, C:1, D:2

Thursday
A:1, B:1, C:1, D:2

Tuesday
A:1, B:1, D:1

Alice Bob Cathy Dave

Tim Wood - The George Washington University

Dependencies
• Vector clocks also help understand the dependency
between different events and processes

P1

P2

P3

a

b

c

d

e f

g

h i

j

P4 k l m n

Tim Wood - The George Washington University

Multi-Tier Backup
• Consider a multi-tier web app backup system

- Some tiers have a disk that must be protected
- All writes to protected disks must be replicated to a backup
- Can only send responses to a client once writes have been

successfully backed up!

Host 3Host 2Host 1

Front End App Tier Database

Backup server

[Wood, SOCC 2011]

Tim Wood - The George Washington University

Host 3Host 2Host 1

Tracking Dependencies
• Use Vector Clocks to track pending writes

- One entry per protected disk: <D1, D2, ...,Dn>
• Node i increments Di on each write
• Use vector clocks to determine a causal ordering

Front End App Tier Database
5,10 5,10 5,106,10 6,10 6,106,11

Backup server

6,10

5,10
Front, DB

6,11

Tim Wood - The George Washington University

• Use Vector Clocks to track pending writes
- One entry per protected disk: <D1, D2, ...,Dn>

• Node i increments Di on each write
• Use vector clocks to determine a causal ordering

Host 3Host 2Host 1

Tracking Dependencies

Front End App Tier Database
5,10 5,10 5,106,10 6,10 6,106,11

Backup server

5,10
Front, DB

NetQ

6,10

6,11

6
11

6,116,11

Tim Wood - The George Washington University

Ordered Asynchrony
• Allowing processing to proceed asynchronously
provides major performance advantage!

- But need vector clocks to determine ordering and dependencies

Front write (RTT) App processing DB write (RTT) Reply

Front write (RTT)

App processing

DB write (RTT)

Reply

vs

(a) Read Requests

(b) Write Requests

Figure 11: With 100 ms RTT, the black-box network buffering
in PipeCloud causes some read-only requests to have higher
response times, but it provides a significant performance im-
provement for write requests compared to synchronous.

mance for reads is very close to synchronous DRBD.
PipeCloud’s greatest strength shows when we observe the re-

sponse time of requests that involve at least one database write in
Figure 11(b). PipeCloud’s ability to overlap work with network de-
lays decreases the median response time by 50%, from over 600
ms to less than 300 ms. Only 3% of requests to PipeCloud take
longer than one second; with synchronous replication that rises
nearly 40% . This improved performance allows PipeCloud to be
used with much more stringent performance SLAs.

6.3 Impact of Read and Write Rates
This experiment explores how the network buffering in PipeCloud

can unnecessarily delay read-only requests that are processed con-
currently with writes. We use our CompDB web application in a
single-VM setup and send a constant stream of 100 read requests
per second as well as a variable stream of write requests that insert
records into a protected database. The read requests return static
data while the writes cause a record to be inserted to the database.
There is a 50 ms RTT between primary and backup. Figure 12
shows how the performance of read requests is impacted by the
writes. When there is a very low write request rate, the response
time of Sync and PipeCloud are very similar, but as the write rate
rises, PipeCloud sees more read-only packets being delayed. How-
ever, the increased write rate also has a performance impact on the
read requests in Sync because the system quickly becomes over-
loaded. PipeCloud is able to support a much higher write work-
load and still provide responses to read requests within a reasonable
time. We believe that the trade-off provided by PipeCloud is a de-
sirable one for application designers: a small reduction in read per-
formance at low request rates is balanced by a significant reduction
in write response times and support for higher overall throughput.

6.4 Multi-tier Sensitivity Analysis
To verify PipeCloud’s ability to hide replication latency by over-

lapping it with useful work, we performed an experiment in which
we arbitrarily adjust the amount of computation in a multi-tier server.
We use the CompDB application split into two tiers; the front tier
performs a controlled amount of computation and the backend in-

Figure 12: PipeCloud’s black box network buffering causes
read requests to initially see higher delay than Sync, but
pipelining supports a much larger write workload than Sync.

��
���
���
���

����
����
����
����
����

�� ��� ��� ��� ����

�
�	

�
�	

��
�

�
��

��
	�

���
����������	����	�

����
��
������������

��
���������������
!	���

Figure 13: PipeCloud continues processing as writes are sent to
the backup site, allowing it to provide equivalent performance
to asynchronous replication if there is sufficient work to do.

serts a record into a database. We also compare PipeCloud against
a naïve version that only applies pipelining to the DB tier. The RTT
for the backup site is 50ms.

Figure 13 shows how the average response time changes as a
function of the controlled amount of computation. As the com-
putation cost increases, the synchronous and naïve PipeCloud ap-
proaches have a linear increase in response time since the front tier
must wait for the full round trip before continuing further process-
ing. However, when PipeCloud is applied across the two tiers, it
is able to perform this processing concurrently with replication, es-
sentially providing up to 50 ms of “free computation”. For requests
that require more processing than the round trip time, PipeCloud
provides the same response time as an asynchronous approach,
with the advantage of much stricter client RPO guarantees.

6.5 Protecting Multiple Databases
With current approaches, often only a single tier of an applica-

tion is protected with DR because it is too expensive in terms of
cost and performance to replicate the state of multiple application
tiers. To evaluate PipeCloud’s support for multiple servers with
protected storage we consider a 3-tier deployment of our Com-
pDB application configured so each tier includes both a web and
database component. Figure 14 shows the average response time
of requests to this application when either one, two, or all three of
the tiers are protected by a DR system. There is a 50 ms RTT, and
we use a single client in order to provide a best case response time.
With synchronous replication, the response time increases by more
than a round trip delay for every tier protected since the writes per-
formed at each tier must be replicated and acknowledged serially.

PipeCloud on the other hand, is able to pipeline the replica-
tion processes across tiers, providing both better overall perfor-
mance and only a minimal performance change when protecting
additional tiers. When protecting all three tiers, PipeCloud reduces
the response time from 426 ms to only 63 ms, a 6.7 times reduc-
tion. Being able to pipeline the replication of multiple application

10

Async

PipeCloud

Syn
c

Computation Cost (ms)

R
es

po
ns

e
Ti

m
e

(m
s)

Tim Wood - The George Washington University

Time and Clocks
• Synchronizing clocks is difficult
• But often, knowing an order of events is more
important than knowing the “wall clock” time!

• Lamport and Vector Clocks provide ways of
determining a consistent ordering of events

- But some events might be treated as concurrent!
• The concept of vector clocks or version vectors is
commonly used in real distributed systems

Distributed
Coordination

Tim Wood - The George Washington University

(Distributed) Locking
• We need mutual exclusion to protect data

- How does this limit scalability?

• Among processes and threads:
- Mutexes and Semaphores

• Among distributed servers?

• Centralized or decentralized?

Tim Wood - The George Washington University

Centralized Approach
• Simplest approach: put one node in charge
• Other nodes ask coordinator for each lock

- Block until they are granted the lock
- Send release message when done

• Coordinator can decide  
what order to grant lock

• Do we get:
- Mutual exclusion?
- Progress?
- Resilience to failures?
- Balanced load?

C

A

B
Lo

ck
Gran

t

Lock

Lock Queue
B
C

wants lock wants lock

Tim Wood - The George Washington University

Distributed Approach
• Use Lamport Clocks to order lock
requests across nodes

• Send Lock message with clock
- Wait for OKs from all nodes

• When receiving Lock msg:
- Send OK if not interested
- If I want the lock:

- Send OK if request's clock is smaller
- Else, put request in queue

• When done with a lock:
- Send OK to anybody in queue

C  
15

B  
5

5 L
oc

k 15 Lock
A  
3

15 Lock

5 Lock

C  
16

B  
16

OK
B OK C

A  
16

OK B

Queue
C 15

waiting for  
OK from B...

Tim Wood - The George Washington University

Ring Approach
• Nodes are ordered in a ring
• One node has a token
• If you have the token, you have the lock
• If you don't need it... pass it on

B  C  

A  

B  C  

A

wait for  
token

Run critical  
section

Pass it along

wait for  
token

Tim Wood - The George Washington University

Token Ring
• Can be slow...

- Will we make progress?

Z  

A  

Pass it along

wait for  
token

...  
   

 
...  

      

Tim Wood - The George Washington University

Comparison
• Messages per lock/release

- Centralized:
- Distributed:
- Token Ring:

• Delay before entry
- Centralized:
- Distributed:
- Token Ring:

• Problems
- Centralized:
- Distributed:
- Token Ring:

Are the distributed
approaches better in

any way?

Tim Wood - The George Washington University

Comparison
• Messages per lock/release

- Centralized: 3
- Distributed: 2(n-1)
- Token Ring: ???

• Delay before entry
- Centralized: 2
- Distributed: 2(n-1) in parallel
- Token Ring: 0 to n-1 in sequence

• Problems
- Centralized: Coordinator crashes
- Distributed: anybody crashes
- Token Ring: lost token, crashes

Are the distributed
approaches better in

any way?

Tim Wood - The George Washington University

Distributed Systems are Hard
• Going from centralized to distributed can be..

• Slower
- If everyone needs to do more work

• More error prone
- 10 nodes are 10x more likely to have a failure than one

• Much more complicated
- If you need a complex protocol
- If nodes need to know about all others

Tim Wood - The George Washington University

Distributed Architectures
• Purely distributed / decentralized architectures are
difficult to run correctly and efficiently

P4 P2

P3 P1

P4 P2

P3 P1

Decentralized Centralized

Tim Wood - The George Washington University

Elections
• Appoint a central coordinator

- But allow them to be replaced in a safe, distributed way

• Must be able to handle  
simultaneous elections

- Reach a consistent result

• Who should win? P7 P2

P3 P1

P8

P6

Tim Wood - The George Washington University

Bully Algorithm
• The biggest (ID) wins
• Any process P can initiate an

election
• P sends Election messages to

all process with higher Ids and
awaits OK messages

• If it receives an OK, it drops out
and waits for an I won

• If a process receives an Election
msg, it returns an OK...

P4

P2

P3

P1P8

P6

P5

P7

Election!

Tim Wood - The George Washington University

Bully Algorithm
• The biggest (ID) wins
• Any process P can initiate an

election
• P sends Election messages to

all process with higher Ids and
awaits OK messages

• If it receives an OK, it drops out
and waits for an I won

• If a process receives an Election
msg, it returns an OK...

P4

P2

P3

P1P8

P6

P5

P7 OK

OK

What next?

Tim Wood - The George Washington University

Bully Algorithm
• The biggest (ID) wins
• Any process P can initiate an election
• P sends Election messages to all

process with higher Ids and awaits OK
messages

• If it receives an OK, it drops out and
waits for an I won

• If a process receives an Election msg, it
returns an OK and starts an election

• If no OK messages, P becomes leader
and sends I won to all process with
lower Ids

• If a process receives a I won, it treats
sender as the leader

P4

P2

P3

P1P8

P6

P5

P7

I W
ON!!!

El
ec

tio
n!

Tim Wood - The George Washington University

Ring Algorithm
• Any other ideas?

P4

P2

P3

P1P8

P6

P5

P7

Tim Wood - The George Washington University

Ring Algorithm
• Initiator sends an Election
message around the ring

• Add your ID to the message
• When Initiator receives
message again, it announces
the winner

• What happens if multiple
elections occur at the same
time?

P4

P2

P3

P1P8

P6

P5

P7

Elect 
<1>

Elect 
<1,2>

Elect 
<1,2,3>

Elect 
<1,2,3>

Tim Wood - The George Washington University

Ring Algorithm

P4

P2

P3

P1P8

P6

P5

P7

Elect 
<1>

Elect 
<1,2>

Elect 
<1,2,3>

Elect 
<1,2,3>

Elect 
<1,2,3,6>

Elect 
<1,2,3,6,8>• Initiator sends an Election

message around the ring
• Add your ID to the message
• When Initiator receives
message again, it announces
the winner

• What happens if multiple
elections occur at the same
time?

Tim Wood - The George Washington University

Comparison
• Number of messages sent to elect a leader:

• Bully Algorithm
- Worst case: lowest ID node initiates election

- Triggers n-1 elections at every other node = O(n^2) messages
- Best case: Immediate election after n-2 messages

• Ring Algorithm
- Always 2(n-1) messages
- Around the ring, then notify all

Tim Wood - The George Washington University

Elections + Centralized Locking
• Elect a leader
• Let them make all the decisions about locks

• What kinds of failures  
can we handle?

- Leader/non-leader?
- Locked/unlocked?
- During election?

P4

P2

P3

P1P8

P6

P5

P7

Elect  
P8

Lock

