Distributed Systems
CS6421

Challenges
Heterogeneity
Openness
Security
Faillure Handling
Concurrency
Quality of Service
Scalabllity
Transparency

Tim Wood - The George Washington University

Clocks and Timing

Distributed systems often need to order events to
nelp with consistency and coordination

Coordinating updates to a distributed file system
Managing distributed locks

Providing consistent updates in a distributed DB

Tim Wood - The George Washington University

Coordinating time?

How can we synchronize the clocks on two servers?

clock: 8:03
A

B >
clock: 8:01

Tim Wood - The George Washington University

Cristian’s Algorithm

—asy way to synchronize clock with a time server

~ 0.010sec
A \ - .
5 / .

clockt = 8:071.500

Client sends a clock request to server
Measures the round trip time
Setclocktot+ 1/2°RTT (8:01.505)

Tim Wood - The George Washington University

Cristian’s Algorithm

What will affect accuracy?
settot+ RTT/2
0.010 sec

A i i .
no error!
B .

t
0.010 sec

C i { .
\/ ahead or behind?
D t .

Tim Wood - The George Washington University

Cristian’s Algorithm

Suppose the minimum delay between A and B is X

0.010 sec

C I i .
X\/Range: [t+X, t + RTT-X]
D .

Tim Wood - The George Washington University

Ordering

Sometimes we don’t actually need clock time
We just care about the order of events!

What event happens before another event”?
- e->e’ means event e happens before event €’

—asy: we'll just use counters in each process and

Update them when events happen!
- Maybe not so easy...

Tim Wood - The George Washington University

Ordering

@
b I g

.. Physical

2 ;
Ime
,03 @ >

e f

An event is one of the following:
- Action that occurs within a process
- Sending a message
- Recelving a message

What is true”? What can’t we know?

Tim Wood - The George Washington University

Happens Before: ->

14 ® o
a b T g

|

.. Physical

2 ;
Ime
,03 o |

e f

What is true”?

- a->b, b->g, c->d, e->f (events in same process)
- b->c, d->f (send is before receive)

What can’t we know?
- e??a
- e??cC

Tim Wood - The George Washington University

Ordering
2 3

1
P ® ° -
a b T g
1 1 2 . Physical
c N time
,03 o 1 2 |
€ f

If we keep count of events at each process
iIndependently, are those counters meaningful?

Tim Wood - The George Washington University

Lamport Clock

o
o d

I o Ptr;%/nsgcal
C a
mh
1 5
/3 o -
e

—ach process maintains a counter, L

Increment counter when an event happens

When receiving a message, take max of own and
sender’s counter, then increment

Tim Wood - The George Washington University

Clock Comparison

Independent clocks

oo d 2 3, .
If e->e’, then: A BN 1 g 2 physica
Cle) 222 Cl(e’) c Xz
p .J ,,
o Lampo3rt clocks
AR QU]

; s If e->e’, then:

0 X " L(e)<L(e)

> @ —

Tim Wood - The George Washington University

Clock Comparison

Is the opposite true?
if L(e) < L(e’) then do we know e->e’?

2 Lamposrt clocks

1
A g ® >
d b I g

. s If e->e’, then:

c N—) time L(e) < L(e!)

@ —

Tim Wood - The George Washington University

Clock Comparison

Is the opposite true? No!
Lamport clocks don’t actually let us compare
two clocks to know how they are related :(

2 Lamposrt clocks

1
P e ® -
d b I g

] s If e->e’, then:

c N} time L(e) < L(e!)

@ —

Tim Wood - The George Washington University

Lamport Clocks

Lamport clocks are better than nothing

- but only let us make limited guarantees about how things are
ordered

|deally we want a clock value that indicates:
- |f an event happened before another event
- If two events happened concurrently

Pl | P2 | P3
Lamport clocks
. - 3 . a:l |c:3|e:l
d b I g
3 Physica b:2|d:4| f:5

4
P2 T time
C a
03 -
f

@ —

Tim Wood - The George Washington University

Vector Clocks

(2,0,0)

mo:

0,0,0) 210) (220) _ Physical

1. time
C a m
(0,0,1) (2,2,2)
3 >

f

o @

—ach process keeps an array of counters: (p1, p2, p3)
- When p_i has an event, increment V[p_l]

- Send full vector clock with message

- Update each entry to the maximum when receiving a clock

Tim Wood - The George Washington University

o3

Now we can compare orderings!

if V(e) < V(e') then e->¢’
- (a,b,c) < (d,e,f) if: a: 1,0,0 | c:2,1,0
a<d & b<e & c<f

If neither V(e) < V(e') nor V(e’) < V(e) b:2,0,0 | d:2,2,0
then e and e’ are concurrent events g:3,0,0

Vector Clocks

(2,0,0)

m.:
©0:

(0,0,0) 21.0) (220 _ Physical

C q time

(0,0,1) (2,2,2)
®
€

Pl P2

P3

e: 0,0,

f:2,2,2

Tim Wood - The George Washington University

Lamport vs Vector

Which clock is more useful when you can’t see the

timing diagram??
- Remember, your program will only see these counters!

Pl |P2|P3 Pl P2 P3
a:l |c:3 |e:l a:1,0,0 | ¢:2,1,0 | 0,0,
b:2|d:4| 5 b:2,0,0 | d:2,2,0 | £:2,2,2
g:3 g:3,0,0

Tim Wood - The George Washington University

VC Worksheet

? . ? 2
P2 . f.\ .
P3 : : /

NN @

What are the vector clocks at each event?
Assume all processes start with (0,0,0)

Tim Wood - The George Washington University

How to Compare VC?

1,00 2,0,0 3,0,0 42,4
J
P2 @ @ >
= f
21,0 2,2,0\ /

@ >

P3 : . > .

0,0,2 223

I
2,2,4

0,0,1

How does g compare to d?

Tim Wood - The George Washington University

Vector Clocks

Allow us to compare clocks to determine a partial
ordering of events

—xample usage: versioning a document being edited
by multiple users. How do you know the order edits

were applied and who had what version when they
edited?

s there a drawback to vector clocks compared to
amport clocks?

Tim Wood - The George Washington University

Clock Worksheet

Do the worksheet in groups of 2-3 students

When you finish, do this on the back:

- Draw the timeline for the four processes with vector clocks
shown In problem 3. Compare your answer with another group.

P1 P2 P3 P4
1,0,0,0 1,1,0,0 1 0,0,1,0 . 0,0,0,1 Flndthe
a. 1,U,U, e. 1,1,U, - U,U, |, . U,U,U,
bug???
b: 2,0,0,0 f: 1,2,0,1 :0,0,2,2 m: 0,0,0,2
c: 3,0,0,0 g. 1,3,0,1 k: 0,0,3,2 n: 0,0,0,3
d: 4,2,0,1 h: 1,4,3,2

Version Vectors

We can apply the vector clock concept to versioning

a plece of data
- This is used in many distributed data stores (DynamoDB, Riak)

When a piece of data is updated:

ag it with the actor who is modifying it and the version #

reat the (actor: version) pairs like a vector clock

The version vectors can be used to determine a
causal ordering of updates

Also can detect concurrent updates

Need to have a policy for resolving conflicts
- If two versions are concurrent, they are “siblings”, return both!

Tim Wood - The George Washington University

Version Vectors

Alice tells everyone to meet on Wednesday

Ben and

Dave and Cathy discuss and decide on Thursday

Dave exchange emails and decide Tuesday

Alice wants to know the final meeting time, but Dave
s offline and Ben and Cathy disagree... what to do?

Wednesday Tuesday Thursday

277

Tim Wood - The George Washington University

Version Vectors

Alice tells everyone to meet on Wednesday

Dave and Cathy discuss and decide on Thursday

Sen and Dave exchange emails and decide Tuesday

Wednesday Wednesday Wednesday Wednesday

Tuesday Thursday Thursday
Tuesday

Tim Wood - The George Washington University

Version Vectors

Alice tells everyone to meet on Wednesday

Dave and Cathy discuss and decide on Thursday

Sen and Dave exchange emails and decide Tuesday

Wednesday Wednesday Wednesday Wednesday

A:1 A:1 A:1 A:1
Thursday Thursday
A:1,C:1, D:1 A:1,C:1, D:1
Tuesday Tuesday
A:1,B:1,C:1, D:2 A:1,B:1,C:1, D:2

Tim Wood - The George Washington University

Version Vectors

The result ends on the order of:
- Dave and Cathy discuss and decide on Thursday
- Ben and Dave exchange emails and decide Tuesday

Wednesday Tuesday Thursday Tuesday
A:1 A:1,B:1,C:1,D:2 A:1,C:1, D:1 A:1,B:1,C:1, D:2
or
Wednesday Tuesday Thursday Thursday
A:1 A:1,B:1, D:1 A:1,B:1,C:1,D:2 A:1,B:1,C:1,D:2

Tim Wood - The George Washington University

Resolving Conftlicts

What if we have?

Friday Tuesday Thursday Thursday
A:2 A:1,B:1, D:1 A:1,B:1,C:1,D:2 A:1,B:1,C:1, D:2

What are the conflicts?

Tim Wood - The George Washington University

Resolving Conftlicts

What if we have?

Friday Tuesday Thursday Thursday
A:2 A:1,B:1, D:1 A:1,B:1,C:1,D:2 A:1,B:1,C:1,D:2

How to resolve Alice vs the rest?

- The Tuesday vs Thursday debate is not a real conflict since we
can order them based on their version vectors

We need a policy for resolving the conflicts
- Random
- Priority based
- User resolved

Tim Wood - The George Washington University

Dependencies

Vector clocks also help understand the dependency
between different events and processes

——
h i

® ®
m n

e
°
d

P3

o @

P4

\.

> @

Tim Wood - The George Washington University

[Wood, SOCC 2011]

Multi-Tier Backup

Consider a multi-tier web app backup system
- Some tiers have a disk that must be protected
- All writes to protected disks must be replicated to a backup

- Can only send responses to a client once writes have been
successfully backed up!

Front End App Tier Database]
L. Host 2 HosAt 3
\

S

N

Tracking Dependencies

Use Vector Clocks to track pending writes

- One entry per protected disk: <D+,

D2, ...,Dn>

Node I Increments D on each write

Front, DB
5,10

Use vector clocks to determine a causal ordering

6,10

6,11

N
Front End App Tier l | l

Host 3

6,10

Host |
£ 2

Host 2

6,11

Databas:]

&

o7

/*é%

/l\ Backup server/A‘

Tracking Dependencies

Use Vector Clocks to track pending writes Front, DB

- One entry per protected disk: <D1, D2, ..

Node I Increments D on each write

-,Dn> 5,10

Use vector clocks to determine a causal ordering

> 1 Front End ll IApp Tier l | IDatabas:j
ost | Host 2 Host 3
o =

7

53

= 4 \E

F

|\ Backup server,A‘

\

=

Ordered Asynchrony

Allowing processing to proceed asynchronously
provides major performance advantage!

- But need vector clocks to determine ordering and dependencies

Front write (RTT)

App processing

DB write (RTT)

Reply

200

7

51
= 17
:: 150 ¢ 91“°
£ 125
= 100 |
g 75 PipeCioud
=) = = mm m W
% 2(5) - 510“
2 P

VS

0 25

50

75 100

Computation Cost (ms)

Front write (RTT)

App processing
‘ DB write (RTT)

‘ Reply \

Tim Wood - The George Washington University

Time and Clocks

Synchronizing clocks is difficult

But often, knowing an order of events Is more
important than knowing the “wall clock™ time!

Lamport and Vector Clocks provide ways of

determining a consistent ordering of events
- But some events might be treated as concurrent!

The concept of vector clocks or version vectors Is
commonly used in real distributed systems

Tim Wood - The George Washington University

Distributed
Coordination

(Distributed) Locking

We need mutual exclusion to protect data
- How does this limit scalability?

Among processes and threads:
- Mutexes and Semaphores

Among distributed servers”

Centralized or decentralized?

Tim Wood - The George Washington University

Centralized Approach

Simplest approach: put one node in charge

Other nodes ask coordinator for each 10ck ([Toek Gueval

- Block until they are granted the lock B

- Send release message when done C
Coordinator can decide ©< >
what order to grant lock

& ¢
. S . e
DO we get: Y, Q A
. &

- Mutual exclusion? G

- Progress”?

- Resilience to failures” °

- Balanced load?

wants lock wants lock

Tim Wood - The George Washington University

Distributed Approach

Jse Lamport Clocks to order lock
requests across nodes 7 \
Send Lock message with clock

- Wait for OKs from all nodes ‘ 15 Lock @

When receiving Lock msg: 5 Lock
- Send OK if not interested
- |If | want the lock:

- Send OK if request's clock is smaller D ®
\y '1‘0
- Else, put request in queue O
=
<

When done with a lock:
- Send OK to anybody in queue

Queue waiting for
C 15 OK from B...

Tim Wood - The George Washington University

Ring Approach
Nodes are ordered Iin a ring
One node has a token
If you have the token, you have the lock
If you don't need it... pass it on

Pass it along
'{@\ '{@\

l' ‘A " ‘A
@ ‘ ------------- ‘ ------------- °
Run critical wait for wait for

section token token

Tim Wood - The George Washington University

Token Ring

Can be slow...
- Will we make progress”

Pass it along

B0e00,
OO0 0O-0OC

wait for
token

Tim Wood - The George Washington University

Comparison

Messages per lock/release
- Centralized:
- Distributed:

- Token Ring: " Are the distributed

Delay before entry approaches better in
- Centralized: any way?
- Distributed: \ y
- Token Ring:

Problems
- Centralized:
- Distributed:
- Token Ring:

Tim Wood - The George Washington University

Comparison

Messages per lock/release
- Centralized: 3
- Distributed: 2(n-1)

- Token Ring: 77 " Are the distributed
Delay before entry approaches better in

- Centralized: 2 any way?

- Distributed: 2(n-1) in parallel \ /

- Token Ring: O to n-1 In sequence

Problems
- Centralized: Coordinator crashes
- Distributed: anybody crashes
- Token Ring: lost token, crashes

Tim Wood - The George Washington University

Distributed Systems are Hard

Going from centralized to distributed can be..

Slower
- |f everyone needs to do more work

More error prone
- 10 nodes are 10x more likely to have a failure than one

Much more complicated
- |If you need a complex protocol
- If nodes need to know about all others

Tim Wood - The George Washington University

Distributed Architectures

Purely distributed / decentralized architectures are
difficult to run correctly and efficiently

o [[Eeca
EIRES BN

Decentralized Centralized

Tim Wood - The George Washington University

Elections

Appoint a central coordinator
- But allow them to be replaced in a safe, distributed way

Must be able to handle

simultaneous elections
- Reach a consistent result

Who should win® P8 37 ﬁ —E
P6j/ {PB TPl

P2

Tim Wood - The George Washington University

Bully Algorithm

The biggest (ID) wins

Any process P can initiate an [P8 J [P1 J
election

P sends Election messages to
all process with higher lds and
awaits OK messages

If it receives an OK, it drops out
and waits for an | won

&3

If a process receives an Election
msg, it returns an OK...

Tim Wood - The George Washington University

Bully Algorithm

The biggest (ID) wins

Any process P can initiate an [P8 J [P1 J

election
O [P2 J
& o
If it receives an OK, it drops out

and waits for an 1 won D6 J OK »{ P3 J

P sends Election messages to
all process with higher lds and
awaits OK messages

If a process receives an Election
msg, it returns an OK...

What next? o 6

Tim Wood - The George Washington University

Bully Algorithm

The biggest (ID) wins

Any process P can initiate an election

P sends Election messages to all
process with higher |[ds and awaits OK
messages

If it receives an OK, it drops out and
waits for an | won

Election!

If a process receives an Election msg, it
returns an OK and starts an election

If no OK messages, P becomes leader
and sends | won to all process with
lower |ds

If a process receives a | won, it treats
sender as the leader

Tim Wood - The George Washington University

Ring Algorithm

Any other ideas?

Tim Wood - The George Washington University

Ring Algorithm

Initiator sends an Election

message around the ring [b J [b1 J
Add your ID to the message Elect
" . <1>
When Initiator receives
message again, it announces - [P2 J
the winner Elect
Elect <1 >
| | [P6J<123>[P3J
What happens it multiple T Bl
elections occur at the same ;1 235

" D

Tim Wood - The George Washington University

Ring Algorithm

Elect
Initiator sends an Election <1,2,3,6,8>
message around the ring [ba J ’[b1 J
Add your ID to the message Elect Elect

<1,2,3,6> <1>

When Initiator receives
message again, it announces
the winner

What happens if multiple
elections occur at the same
time?

Tim Wood - The George Washington University

Comparison

Number of messages sent to elect a leader:

Sully Algorithm

- Worst case: lowest ID node initiates election
- Triggers n-1 elections at every other node = O(N\2) messages

- Best case: Immediate election after n-2 messages

Ring Algorithm
- Always 2(n-1) messages
- Around the ring, then notify all

Tim Wood - The George Washington University

Elections + Centralized Locking

—lect a leader

et them make all the decisions about locks

What kinds of failures

can we handle”
- Leader/non-leader”?
- Locked/unlocked?
- During election?

Tim Wood - The George Washington University

